Collagen and aggrecan degradation is blocked in interleukin-1-treated cartilage explants by an inhibitor of IkappaB kinase through suppression of metalloproteinase expression.

نویسندگان

  • Mark A Pattoli
  • John F MacMaster
  • Kurt R Gregor
  • James R Burke
چکیده

It has previously been shown that BMS-345541 [4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline], a highly-selective inhibitor of IkappaB kinase (IKK), blocks both inflammation and joint destruction in murine collagen-induced arthritis. Although this agent has been shown to inhibit nuclear factor-kappaB-dependent cytokine expression in mice, we examined whether the inhibitor directly inhibits cytokine-driven metalloproteinase expression and cartilage degradation. In SW-1353 human chondrosarcoma cells, BMS-345541 inhibited interleukin-1 (IL-1)-dependent expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 in a concentration-dependent manner. IL-1 treatment failed to induce and BMS-345541 did not inhibit the expression of aggrecanases ADAMTS-4 (a disintegrin and metalloproteinase domain with thrombospondin motif) and ADAMTS-5, as well as the tissue inhibitor of metalloproteinase-3. In bovine cartilage explant cultures stimulated with IL-1 to induce aggrecan and collagen degradation over 3 weeks of culture, BMS-345541 was effective in inhibiting the degradation of both aggrecan and collagen. Secreted ADAMTS-4 was not inhibited by BMS-345541 in these explants, whereas ADAMTS-5 secretion was blocked in the same concentration range that inhibited aggrecan degradation. The ability of the IKK inhibitor to block aggrecan and collagen degradation through suppression of metalloproteinase expression, coupled with its ability to block inflammatory cytokine production, shows IKK to be a promising target for the development of novel agents to treat arthritic diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggrecan protects cartilage collagen from proteolytic cleavage.

The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely de...

متن کامل

Aggrecanolysis and in vitro matrix degradation in the immature bovine meniscus: mechanisms and functional implications

INTRODUCTION Little is known about endogenous or cytokine-stimulated aggrecan catabolism in the meniscal fibrocartilage of the knee. The objectives of this study were to characterize the structure, distribution, and processing of aggrecan in menisci from immature bovines, and to identify mechanisms of extracellular matrix degradation that lead to changes in the mechanical properties of meniscal...

متن کامل

Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage.

Osteoarthritis is a degenerative joint disorder characterized by breakdown of articular cartilage. Degradation of aggrecan, which together with type II collagen provides cartilage with its unique characteristics of compressibility and elasticity, is an early and sustained feature of osteoarthritis. The present work was set up to identify the enzyme(s) responsible for aggrecan breakdown in osteo...

متن کامل

The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases.

Fragments of fibronectin occur naturally in vivo and are increased in the synovial fluid of arthritis patients. We have studied the 45 kDa fragment (Fn-f 45), representing the N-terminal collagen-binding domain of fibronectin, for its ability to modulate the expression of metalloproteinases by porcine articular chondrocytes in vitro. We report that stimulation of cultured chondrocytes, or carti...

متن کامل

Protective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro

Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 315 1  شماره 

صفحات  -

تاریخ انتشار 2005